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Abstract 
Conjoint analysis is a technique for measuring consumer preferences for 
products or services. It is also a method for simulating consumers� 
possible reactions to changes in current products or newly introduced 
products into an existing competitive market.  
One of the fundamental problems in performing Conjoint analysis is how 
to generate experimental designs. The purpose of an experimental design 
is to give a rough overall idea as to the shape of the experimental 
response surface, while only requiring a relatively small number of runs. 
These designs are expected to be orthogonal and balanced in an ideal 
case. In practice, though, it is hard to construct optimal designs and thus 
constructing of near optimal and efficient designs is carried out.  
In this paper it will be present the basic criteria of the design efficiency 
and some algorithms which can be used for its construction. Special 
attention will be paid to the algorithm we developed and implemented in 
Visual Basic application as the procedure in MCON software.  
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1. INTRODUCTION 

Attractiveness of the preference measuring techniques and its usage in practice 
has been rapidly increased in the last few years. The practical significance of these 
techniques derives from their widespread use for new product or concept development 
and valuation studies in such diverse areas as marketing, transport and financial services 
etc. In marketing research, for example, preference measuring techniques may provide an
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answer to questions as to which product will be successful or which attributes of a 
product drive the purchase decision and may thus serve as a valuable aid for managerial 
decision. One method that has become particularly popular in this context is Conjoint 
analysis. 

Conjoint analysis is decompositional method which assumes that 
product/services can be "break-down" into their attributive components and which 
implies study of join effects of variety products' attributes on their preference. 

In Conjoint analysis, respondents have to evaluate a set of alternatives that are 
represented by factorial combinations of the levels of certain attributes. In traditional 
Conjoint approach, the alternatives have to be rank ordered or rated on some graded 
scale. It is assumed that these preference judgments are based on the overall utility values 
of the considered profile's levels. These unknown parameters are than estimated from the 
data. If the data consists of ranking techniques from linear programming, non�metric 
versions of ANOVA can be used. Variants of conjoint analysis that use rating scales are 
referred as metric conjoint analysis. Here, the utility values are usually estimated by least 
squares procedures. Because of the metric response format and the linear relationship 
between preference judgments and attributes it is especially this last type of conjoint 
analysis to which techniques from optimal design theory can be readily applied. 

The quality of statistical analysis heavily depends on the alternatives presented in 
the experimental design. An experimental design is a plan for running an experiment. 
Experiments are performed to study the effects of the factor levels on the dependent 
variable. The factors of an experimental design are variables that have two or more fixed 
values or levels of the factors. In Conjoint analysis, the factors are the attributes of the 
hypothetical products or services, and the response is preference or choice.  

Using all combinations of attribute levels, i.e. a full factorial design, the number 
of evaluations required from every respondent soon becomes prohibitively large when the 
number of attributes and/or levels increases. To deal with this problem, the application of 
formal experimental designs was suggested. Green (1974) as well as Green et al. (1978) 
proposed the use of orthogonal arrays, incomplete block designs and fractional factorial 
designs of different resolutions to reduce the number of evaluations to be performed. In 
this reduction process it is especially important the goodness of the reduced designs. This 
goodness is named as efficiency.   

There are several ways to quantify the relative efficiency of experimental 
designs. The choice of measure will determine which types of experimental designs are 
favoured as well as the algorithms for choosing efficient designs. 

The paper is organized as follows. In Section 2 we describe some of the 
fundamental concepts in Conjoin experimental design including standard factorial 
designs, as well as fractional factorial designs, orthogonal arrays and nonorthogonal 
designs. Design terminology introduces and design efficiency explains. Section 3 presents 
basic optimality criteria as measure of the design efficiency. There are many algorithms 
for constructing efficient experimental designs. Some standard algorithms are presented 
in Section 4. Finally, in Section 5 we propose an algorithm which combines one standard 
and one nonstandard optimality criteria to generate efficient experimental design. The 
computational experiments we made confirm the efficiency of this algorithm. In Section 6 
we give conclusions and further research directions. 



 

2. EXPERIMENTAL DESIGN IN CONJOINT ANALYSIS 
The design of experiments is a fundamental part of Conjoint analysis. 

Experimental designs are used to construct the hypothetical products or services. A 
simple experimental design is the full-factorial design, which consists of all possible 
combinations of the levels of the factors. These combinations in Conjoint analysis are 
referred as profiles or concepts. For example, with five factors, two at two levels and 
three at three levels (denoted as 2233), there are 108 possible combinations. In a full-
factorial design, all main effects, two-way interactions, and higher-order interactions are 
estimable and uncorrelated. The problem with a full-factorial design is that, for more 
practical situations, it is too cost-prohibitive and tedious to have subjects rate all possible 
combinations. For this reason, researchers often use fractional-factorial designs, which 
have fewer runs than full-factorial designs. The basic difficulty is how to construct such 
fractional-factorial design which can provide quality data. In order to obtain valuable and 
reliable data, two basic principles must be taken into account: orthogonality and balance. 

A design is orthogonal if all effects can be estimated independently of all of the 
other effects, and it is balanced when each level occurs equally often within each factor, 
which means the intercept is orthogonal to each effect. In ideal case experimental design 
is orthogonal and balanced, hence optimal [8]. This is case for full-factorial designs.  

A special type of fractional-factorial design is the orthogonal array, in which all 
estimable effects are uncorrelated. Orthogonal arrays are categorized by their resolution 
[8]. The resolution identifies which effects, possibly including interactions, are estimable. 
Higher resolutions require larger designs. Orthogonal arrays come in specific numbers of 
runs (e.g., 16, 18, 20, 24, 27, 28) for specific numbers of factors with specific numbers of 
levels. Resolution III orthogonal arrays are frequently used in marketing research. The 
term �orthogonal array,� as it is sometimes used in practice, is imprecise. It correctly 
refers to designs that are both orthogonal and balanced, and hence optimal. It is also 
imprecisely used to refer to designs that are orthogonal but not balanced, and hence 
potentially nonoptimal. Imbalance is a generalized form of nonorthogonality, which 
increases the variances of the parameter estimates. 

Orthogonal designs are available for only a relatively small number of very 
specific problems. They may not be available from follow reasons [7]: 

 when there are many attributes in the survey, 
 when the number of attribute levels is different for most of factors, 
 when some combinations of factor levels are infeasible, 
 when a nonstandard number of runs (factor level combinations or hypothetical 

products) is desired or when the number of runs must be limited, 
 when some factor levels combinations are unrealistic, such as of the best product 

at the lowest price, or 
 when a nonstandard model is being used, such as a model with interactions. 

When an orthogonal design is not available, nonorthogonal designs must be used. 
The measure of experimental design's quality refers as "efficiency". In efficient 
experimental designs variance and covariance of parameters which estimates are minimal. 
Some orthogonal designs are not always more efficient than other orthogonal or 
nonorthogonal designs. 



 

There are a number of techniques for constructing such efficient designs. Two 
basic are manual, which is typically used in surveys with small number of attributes and 
levels, and computerized search which is based on approximate algorithms.  

Before a design is used, it must be coded [4]. One standard coding is the binary 
or dummy variable or (1, 0) coding. Another standard coding is effects or deviations from 
means or (1, 0,-1) coding. However, for evaluating design efficiency, an orthogonal 
coding is most appropriate. This is because standard nonorthogonal coding such as effects 
or binary is generally correlated, even for orthogonal designs.  

One of the standard ways to orthogonally coding data is Chakravarty's coding [2]. 
The other one method is called the Helmert�s procedure. It consists of arranging a set of 
data into a matrix which fulfils the Helmert�s characteristics, that is the sum of each 
column is equal to zero. Helmert�s contrast matrix is a matrix with k�1 number of 
columns and k number of rows. The diagonal of this matrix from (1,1) to (k�1, k�1) is 
filled with a decreasing series of numbers going from k�1 down to 1. The supra-diagonal 
elements are set to zero while the infra-diagonal elements are set to �1. A matrix 
following these characteristic automatically has a mean of zero for each of the column. 
 
     Supra-diagonal triangle 
 

k-1 0 0 0 �  0  0 
-1 k-2 0 0 �  0  0 
-1 -1 k-3 0 �  0  0 
-1 -1 -1 k-4 �  0  0 
� � � � � ... �  
-1 -1 -1 -1 �  2  0 
-1 -1 -1 -1 � -1  1
 Diagonal 
-1 -1 -1 -1 � -1 -1 

                   Infra-diagonal triangle 
 

Figure 2.1 Helmert�s contrast matrix for an attribute with k levels 
 
3. OPTIMALITY CRITERIA 

Efficiencies are measures of design goodness. An optimality criterion is a single 
number that summarizes how good a design is, and it is maximized or minimized by an 
optimal design. In order to generate an efficient design, specifically methodology was 
developed. Efficient designs can be efficient for one criterion and less efficient for 
another one. There are some standard criteria for measuring efficiency of experimental 
design in Conjoint analysis [8]. Two general types are: information-based criteria and 
distance-based criteria.  

Consider the linear model where consumers provide utility scores, yj, for each 
profile:  

1 1 2 2j j j m mj jy x x x                                                                              (3.1) 

for  j = {1,...,n}, where ijx  are independent variables. In matrix notation (3.1) can be 

written as y = +X + e. Let X is the orthogonally coded design matrix of independent 



 

variables. The information-based criteria such as D- and A-optimality are both related to 
the information matrix 'X X  for the design. This matrix is important because it is 
proportional to the inverse of the variance-covariance matrix for the least-squares 
estimates of the linear parameters of the model. Roughly, a good design should 
"minimize" the variance 1( ' )X X , which is the same as "maximizing" the information 

'X X . D- and A-efficiency are different ways of saying how large ( ' )X X  or 1( ' )X X  
are. 

For the distance-based criteria, the candidates are viewed as comprising a point 
cloud in p-dimensional Euclidean space, where p is the number of parameters in the 
model. The goal is to choose a subset of this cloud that "covers" the whole cloud as 
uniformly as possible or that is as broadly "spread" as possible.  

D-optimality is based on the determinant of the information matrix for the design, 
which is the same as the reciprocal of the determinant of the variance-covariance matrix 
for the least-squares estimates of the linear parameters of the model.  

1( ' ) 1/ | ( ' ) |X X X X                                                                                                      (3.2) 

The determinant is thus a general measure of the size of 1( ' )X X . D-optimality is 
the most common criterion for computer-generated optimal designs.  

The D-optimality criterion has the following characteristics:  
 D-optimality is the most computationally efficient criterion to optimize for the 

low-rank update algorithms, since each update depends only on the variance of 
prediction for the current design. 

 ( ' )X X  is inversely proportional to the size of a confidence ellipsoid for the least-
squares estimates of the linear parameters of the model.  

 1/( ' ) pX X  is equal to the geometric mean of the eigenvalues of 'X X  where p is a 
number of parameters in the model (number of columns in coded matrix X) 

 The D-optimal design is invariant to non-singular coding of the design matrix.  
A-optimality is based on the sum of the variances of the estimated parameters for 

the model, which is the same as the sum of the diagonal elements, or trace, of 1( ' )X X . 
Like the determinant, the A-optimality criterion is a general measure of the size of 

1( ' )X X . A-optimality is less commonly used than D-optimality as a criterion for 
computer optimal design. This is partly because it is more computationally difficult to 
update. Also, A-optimality is not invariant to non-singular recoding of the design matrix; 
different designs will be optimal with different coding. 

For both criteria, if a balanced and orthogonal design exists, then it has optimum 
efficiency; conversely, the more efficient a design is, the more it tends toward balance 
and orthogonality. Assuming an orthogonally coded X: 

 A design is balanced and orthogonal when 1( ' )X X  is diagonal. 

 A design is orthogonal when the submatrix of 1( ' )X X , excluding the row and 
column for the intercept, is diagonal; there may be off-diagonal nonzeros for the 
intercept. 

 A design is balanced when all off-diagonal elements in the intercept row and 
column are zero. 



 

 As efficiency increases, the absolute values of the diagonal elements get smaller. 
For appropriate coded matrix X , measures of efficiency can be scaled to bi in interval 0 
to 100. For Helmert�s coded data (matrix) it is more appropriate to use A optimality 
criterion: 

1

1
100

tr( ' ) /D

A eff
N p

  
 X X

                                                                                 (3.3) 

When data are coded by Chakravarty's procedure, it is more appropriate to use D 
optimality criterion: 

1 1 /

1
100

| ( ' ) | p
D

D eff
N 

  
X X

                                                                                  (3.4) 

In the equations (3.3) and (3.4), p is number of parameters in model. The total 
number of parameters to be estimated is given by the formula: total number of levels � 
number of attributes + 1. DN  is number of runs (profiles) in fractional factorial design 

specified by the user. It is suggested, when possible, including between two to three times 
the number of runs as parameters estimated. However, design efficiency is not the only 
reason for including two to three times as many runs as parameters to be estimated. All 
real-world respondents answer conjoint questions with some degree of error, so those 
observations beyond the minimum required to permit utility estimation are needed to 
refine and stabilize utility estimates. 

These optimality criteria measure the goodness of the design relative to 
hypothetical orthogonal designs that may be far from possible, so they are not useful as 
absolute measures of design efficiency. Instead, they should be used relatively, to 
compare one design to another for the same situation. Efficiencies that are not near 100 
may be perfectly satisfactory. 
 
4. STANDARD ALGORITHMS FOR CONSTRUCTING EFFICIENT 
CONJOINT DESIGNS 

As mentioned above, finding exact optimal designs is hard. Finding exact optimal 
designs in general requires solving a large nonlinear mixed integer programming 
problem, as the number of feasible designs explodes rapidly as the number of factors and 
levels increases. But we live in the real world, and we don�t need the absolute best design, 
only one that�s good enough. This is where approximation algorithms come in.  

One of most simple algorithms for generating information-efficient designs is 
Dykstra�s (1971) sequential search method [7]. The method starts with an empty design 
and adds candidate points so that the chosen efficiency criterion is maximized at each 
step. This algorithm is fast, but it is not very reliable in finding a globally optimal design. 
Also, it always finds the same design. 

A typical approximation algorithm seeks to locate a good solution by the 
following sequential process [11]: 
1. Choose initial feasible solution (random/greedy) 
2. Modify solution slightly (random/greedy) 
3. Repeat 2. until finished, then report best solution seen 
 



 

Random methods modify the current solution in some random way, and this 
change is accepted or rejected via some decision routine. Event worse solutions may be 
accepted under certain decision routines. Simulated annealing is an example of a random 
approximation algorithm.  

Greedy methods modify the current solution in a way that improves the score; as 
they�re seeking to improve the score for every iteration of the process they�re frequently 
referred to as hillclimbing algorithms. 

One large class of pure greedy algorithms for generating efficient designs are the 
exchange algorithms. Exchange algorithms hill climb by adding new design points and 
removing existing design points to improve the objective. There are both Rank-1 and 
Rank-2 exchange algorithms, and these classifications are based on how the algorithm 
changes the points in the current candidate design matrix [11]: 
Rank-1: Choose points to add and delete sequentially (Wynn, DETMAX) 
Rank-2: Choose points to add and delete simultaneously (Fedorov, modified Fedorov, k-
exchange, kl-exchange) 

The Mitchell and Miller (1970) simple exchange algorithm is a slower than 
Dykstra's but more reliable method. It improves the initial design by adding a candidate 
point and then deleting one of the design points, stopping when the chosen criterion 
ceases to improve. The DETMAX algorithm of Mitchell (1974) generalizes the simple 
exchange method. Instead of following each addition of a point by a deletion, the 
algorithm makes excursions in which the size of the design may vary. These algorithms 
add and delete points one at a time. 

The next two algorithms add and delete points simultaneously, and for this 
reason, are usually more reliable for finding the truly optimal design; but because each 
step involves a search over all possible pairs of candidate and design points, they 
generally run much more slowly. The Fedorov (1972) algorithm simultaneously adds one 
candidate point and deletes one design point. Cook and Nachtsheim (1980) define a 
modified Fedorov algorithm that finds the best candidate point to switch with each design 
point. The resulting procedure is generally as efficient as the simple Fedorov algorithm in 
finding the optimal design, but it is up to twice as fast.  

The k-exchange algorithm modifies the current candidate design via the process: 
1. Examine k least critical points only 
2. Least critical: x with smallest ( )v x , where ( ) '( ) ( )v x f x D f x   ), x is a point in p-
dimensional design space, where the total number of factors is p, ( )f x  is the 

corresponding row of our design matrix X, and '( )f x  is corresponding column. 

3. Among these k, find the best exchange to make. 

If k = 1, this is Wynn�s algorithm; if k = n, this is the modified Fedorov 
algorithm. 

The standard philosophy in approximation algorithms is that many small steps are 
generally better than fewer but larger steps. This is precisely the idea behind the 
coordinate-exchange algorithm, which follows the procedure: 
1. Again, choose k least critical points 
2. Examine each point for the best coordinate to exchange 
3. Make this best coordinate exchange 



 

The coordinate exchange algorithm of Meyer and Nachtsheim (1995) does not 
use a candidate set. Instead it refines an initial design by exchanging each level with 
every other possible level, keeping those exchanges that increase efficiency. In effect, this 
method uses a virtual candidate set that consists of all possible runs, even when the full-
factorial candidate set is too large to generate and store. 

Some researchers have proposed nonstandard algorithms and criteria for 
constructing efficient experimental design [7]. Steckel, DeSarbo, and Mahajan (SDM) 
(1991) proposed using computer-generated experimental designs for conjoint analysis to 
exclude unacceptable combinations from the design. They considered a nonstandard 
measure of design goodness based on the determinant of the (m-factor × m-factor) 
correlation matrix (|R|) instead of the customary determinant of the (p-parameter × p-
parameter) variance matrix 1( ' )X X . The SDM approach represents each factor by a 
single column rather than as a set of coded indicator variables. Designs generated using 
nonstandard criteria will not generally be efficient in terms of standard criteria like A-
efficiency and D-efficiency, so the parameter estimates will have larger variances.  

We have proposed an algorithm which combines standard optimality criteria (A 
efficiency) with a nonstandard criterion (P-value in ANOVA). This algorithm is shown in 
the next section. 
 
5. THE PROPOSED ALGORITHM 

The basic idea behind the algorithm we proposed is to generate random initial 
design and than remove and add points simultaneously in order to obtain more efficient 
design. The algorithm has the following features: 

1. The variables (attribute levels) may be numeric or symbolic. 
2. The number of runs is specified arbitrary by the user.  
3. The user has control over how much effort is expended by the algorithm, and can 

if desired monitor the progress of the search. It is not necessary to specify initial 
points for the search. 

4. The algorithm combines two measures of design goodness: A-efficiency and P-
value. 
Optimality criterion A-efficiency we discussed earlier. There are at least two 

reasons for using P-value as the second optimality criterion. First, it enables faster 
convergence to the optimal solution. Second, it is observed that two designs with the 
same A-efficiency can be differentially balanced. Thus, this criterion serves to choose 
better balanced one.  

P-value presents the return of F probability distribution. That is probability that 
there are not significant differences between the variances of columns in coded matrix X. 
In other words, P-value can be used to determine whether parameters in orthogonally 
coded matrix X have different degrees of diversity. P can take any value in interval [0,1]. 
Low values of P indicate that design has great unbalanced attribute levels. This value will 
be low even if some of attributes have perfect balanced levels, while some other have 
extreme unbalanced levels. By improving of balance in sense of quantity and 
homogeneity, the P-value is also increased. If P-value is equal to one, it can mean either 
all levels are completely balanced or there is unbalanced levels which are consistently 
distributed. 



 

The algorithm is based on following: The solution will be accepted (change will 
be made) only if it is equal good or better then existing one, considering least one of the 
criteria. The underlying rationality is: Existence of unbalance impact efficiency but still 
serves as guideline to detect list of appropriate and inappropriate candidates while 
enabling convergence to the better solution (design). 

The algorithm proceeds as follows: 
Step 0 (Initialization): 
Specify the number of iterations (NI) and number of runs (profiles) dN  

Set A efficiency to zero, 0,iA   and set 0i   

Step 1 (Generation of initial solution): 
Randomly generate initial solution 0X  ( dN p  matrix)   
Step 2 (Calculation of initial solution efficiency) 
Calculate , ,i i iA F P  for initial matrix 0X  

Step 3 (Estimation of initial solution efficiency) 
IF 0 100A   and 1P   design 0X  is optimal. GO TO Step 5.  

ELSE set i =1. Go to Step 4  
Step 4: (Iterative procedure for finding better solution) 

a) Detect the worse balanced column in matrix iX  (i.e. column with high value 

of absolute sum of elements) 
b) Generate the list of candidate rows for excluding from existing (current) 

design (LE). Good candidates are those which levels affect on existing of 
unbalance 

c) Generate the list of candidate rows for adding to the design (LA). Good 
candidates are those rows that can improve balance of design 

d) Choose randomly one row from LE list and remove from the design.  
IF list LE is empty, GO TO Step 4a. 

e) Choose randomly one row from LA list and add to the design. One candidate 
can be considered once in the current iteration.  
IF list LA is empty, GO TO Step 4a. 

f) Solve and i iA P  

g) IF 1i iA A   or 1i iP P  make exchange. Current solution (design) is 

matrix iX .  GO TO Step 4h. ELSE GO TO Step 4e. 

h) IF i = NI or IF 100iA   and 1P  , GO TO Step 5.  
ELSE Set i = i + 1, GO TO Step 4 

Step 5: Efficient experimental design is current matrix iX . END. 
 

Since the initial design has been generated randomly, each time we start the procedure, 
for the same date we obtain different design. If we repeat procedure several times, we can 
choose the best suitable solution (design). 
 
 
 



 

SOFTWARE PACKAGE MCON 
The algorithm proposed in previous section, was implemented in Visual Basic 

Application as the procedure in software named MCON. This software consists of: 
1. Form for inputting data (attributes and attribute levels)  
2. Module for orthogonal coding of input data according to Helmert's procedure 
3. Procedure for constructing efficient experimental design.  
4. Procedure for solving part-worths of attribute levels and attribute importances 
5. Module for market simulation 

The power of the algorithm and MCON software was tested on the numerous 
examples and has been shown that it generates high efficient designs. The following 
example presents some of the results. 

We have considered example with five attributes with 3, 4, 3, 2, and 2 number of 
levels respectively. In this example, full-factorial design which consists of all possible 
combinations of attribute levels has 144 profiles (3x4x3x2x2=144). Saturated design 
consists of 10 profiles ((3+4+3+2+2)�5+1=10), while recommended number of profiles 
in design is between 15 and 30. We were tested efficiency of the algorithm implemented 
in the MCON software by measuring goodness of the constructed designs. Results of 
experiment are shown in Table 5.1. 

Number of runs (profiles)  
in the design 

F critical A F P-value 

12 2.0333 85.0155 0 1 
14 2.0185 82.5527 0.0490 0.99994 
15 2.0126 86.0423 0.0545 0.09999 
16 2.0076 89.0611 0.0117 0.99999 
18 1.9990 92.7027 0.0268 0.99999 
20 1.9929 89.7209 0.0346 0.99998 
24 1.9833 90.2650 0 1 
25 1.9814 94.4193 0.0001 1 
32 1.9717 94.0762 0.0171 0.99999 

Table 5.1 Quality of designs with various number of runs, generated by the MCON 
software 

The first column in the Table 5.1 shows the number of runs (profiles) in 
experimental design we choose arbitrary. The second column contains F-critical values 
for every design generated by the MCON software. This value serves for testing 
hypothesis of variance diversity. The third column shows values of the designs' A-
efficiency. Column F indicates existence of unbalance in design. When this value is equal 
to zero, design is completely balanced. Column P-value indicates uniformity of unbalance 
in experimental design. If this value is near to 1 it is mean that design is uniformly 
balanced. 

As can be seen from Table 1, MCON software has constructed high efficient and 
well-balanced designs, no matter the dimensions of design is specified. Design efficiency 
for all of designs is greater than 82%, while for some of them (designs with 18 and 24 
profiles) have reached value greater than 90%. In all of these designs, very low and 
uniformly distributed unbalance of attribute levels exists (F is close to 0 and P value is 
close to 1). Especially, design with 12 profiles is completely balanced with high 



 

efficiency (85%), while completely balanced design with 24 profiles reaches efficiency 
greater than 90%.   

Most efficient design, constructed by MCON software has consisted of 25 runs. 
A-efficiency of this design is equal to 94,42% and design have only one unbalanced level. 
 
6. CONCLUSION 

Conjoint analysis has been widely used method for measuring customer 
preferences since the 1970s. This method is based on idea that customers' decisions 
depend on all tangible and intangible product features.  

One of the fundamental steps in performing Conjoint analysis is construction of 
experimental designs. These designs are expected to be orthogonal and balanced in an 
ideal case. In practice, though, it is hard to construct optimal designs and thus 
constructing of near optimal and efficient designs is carried out. Efficient designs are 
typically nonorthogonal; however they are efficient in the sense that the variances and 
covariances of the parameter estimates are minimized.  

There are several ways to quantify the relative efficiency of experimental 
designs. The choice of measure will determine which types of experimental designs are 
favoured as well as the algorithms for choosing efficient designs. In this paper we have 
presented some standard optimality criteria for measuring design efficiency, as well as 
some widely used algorithms for constructing such efficient designs. These algorithms 
are typically approximate and can be random or greedy, sequential or simultaneous. 

We have proposed a simultaneous algorithm which combines two optimality 
criteria: standard criterion named by A-efficiency, and nonstandard criterion, P-value in 
ANOVA. This algorithm we have implemented in Visual Basic application, as the 
procedure in MCON software. The computational experiments we made confirm the 
efficiency of the algorithm. It was shown that is practical to use these two optimality 
criteria. The designs obtained by the algorithm are not just high efficient but they are 
well-balanced. 

There are a number of possible directions for future research in the area of 
efficient experimental design in Conjoint analysis. First, the results presented here should 
be compared to alternative optimal design criteria, such as D-optimality. Second, the 
efficiency of the algorithm could be compared with efficiency some standard algorithms. 
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