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Abstract

Conjoint analysis is a technique for measuring consumer preferences for
products or services. It is also a method for simulating consumers’
possible reactions to changes in current products or newly introduced
products into an existing competitive market.

One of the fundamental problemsin performing Conjoint analysisis how
to generate experimental designs. The purpose of an experimental design
is to give a rough overall idea as to the shape of the experimental
response surface, while only requiring a relatively small number of runs.
These designs are expected to be orthogonal and balanced in an ideal
case. In practice, though, it is hard to construct optimal designs and thus
constructing of near optimal and efficient designsis carried oui.

In this paper it will be present the basc criteria of the design efficiency
and some algorithms which can be used for its congtruction. Special
attention will be paid to the algorithm we developed and implemented in
Visual Basic application as the procedure in MCON software.

Keywords: Conjoint analysis, experimental design, efficiency, optimality
criteria, algorithms

1. INTRODUCTION

Attractiveness of the preference measuring techniques and its usage in practice
has been rapidly increased in the last few years. The practical significance of these
techniques derives from their widespread use for new product or concept devel opment
and valuation studies in such diverse areas as marketing, transport and financia services
etc. In marketing research, for example, preference measuring techniques may provide an



answer to questions as to which product will be successful or which attributes of a
product drive the purchase decision and may thus serve as a valuable aid for managerial
dedision. One method that has become particularly popular in this context is Conjoint
andysis.

Conjoint analysis is decompositional method which assumes that
product/services can be "break-down" into ther attributive components and which
implies study of join effects of variety products' attributes on their preference.

In Conjoint analysis, respondents have to evauate a set of aternatives that are
represented by factorial combinations of the levels of certain attributes. In traditional
Conjoint approach, the aternatives have to be rank ordered or rated on some graded
scale. It is assumed that these preference judgments are based on the overall utility values
of the considered profil€'s levels. These unknown parameters are than estimated from the
data. If the data consists of ranking techniques from linear programming, non-metric
versions of ANOV A can be used. Variants of conjoint analysis that use rating scaes are
referred as metric conjoint anaysis. Here, the utility values are usually estimated by least
squares procedures. Because of the metric response format and the linear relationship
between preference judgments and attributes it is especially this last type of conjoint
andysis to which techniques from optimal design theory can be readily applied.

The quality of statistical analysis heavily depends on the alternatives presented in
the experimental design. An experimental design is a plan for running an experiment.
Experiments are performed to study the effects of the factor levels on the dependent
variable. The factors of an experimental design are variables that have two or more fixed
values or leves of the factors. In Conjoint analysis, the factors are the attributes of the
hypothetica products or services, and the response is preference or choice.

Using al combinations of attribute levels, i.e. a full factorial design, the number
of evaluations required from every respondent soon becomes prohibitively large when the
number of attributes and/or levels increases. To deal with this problem, the application of
formal experimenta designs was suggested. Green (1974) as well as Green et al. (1978)
proposed the use of orthogona arrays, incomplete block designs and fractional factorial
designs of different resolutions to reduce the number of evaluations to be performed. In
this reduction processit is especidly important the goodness of the reduced designs. This
goodness is named as efficiency.

There are severa ways to quantify the reative efficiency of experimental
designs. The choice of measure will determine which types of experimenta designs are
favoured as well as the algorithms for choosing effidi ent designs.

The paper is organized as follows. In Section 2 we describe some of the
fundamenta concepts in Conjoin experimental design including standard factorial
designs, as well as fractiona factorial designs, orthogona arrays and nonorthogonal
designs. Design terminol ogy introduces and design efficiency explains. Section 3 presents
basic optimality criteria as measure of the design efficiency. There are many algorithms
for constructing efficient experimental designs. Some standard a gorithms are presented
in Section 4. Finaly, in Section 5 we propose an a gorithm which combines one standard
and one nonstandard optimality criteria to generate efficient experimenta design. The
computationa experiments we made confirm the efficiency of this algorithm. In Section 6
we give conclusions and further research directions.



2. EXPERIMENTAL DESIGN IN CONJOINT ANALYSIS

The design of experiments is a fundamental part of Conjoint anaysis.
Experimental designs are used to construct the hypothetical products or services. A
simple experimental design is the full-factorial design, which consists of al possible
combinations of the levels of the factors. These combinations in Conjoint analysis are
referred as profiles or concepts. For example, with five factors, two at two levels and
three at three levels (denoted as 2°3%), there are 108 possible combinations. In a full-
factorial design, all main effects, two-way interactions, and higher-order interactions are
estimable and uncorrdated. The problem with a full-factoria design is that, for more
practical situations, it is too cost-prohibitive and tedious to have subjects rate al possible
combinations. For this reason, researchers often use fractional-factorial designs, which
have fewer runs than full-factorial designs. The basic difficulty is how to construct such
fractiona -factorid design which can provide quality data. In order to obtain valuable and
reliable data, two basic principles must be taken into account: orthogonality and balance

A designis orthogonal if all effects can be estimated independently of all of the
other effects, and it is balanced when each leve occurs equally often within each factor,
which means the intercept is orthogond to each effect. Inideal case experimental design
is orthogonal and balanced, hence optimal [8]. Thisis casefor full-factorial designs.

A specia type of fractional-factorial design is the orthogonal array, in which all
estimable effects are uncorrelated. Orthogonal arrays are categorized by their resolution
[8]. The resolution identifies which effects, possibly ind uding interactions, are estimable.
Higher resolutions require larger designs. Orthogonal arrays come in specific numbers of
runs (e.g., 16, 18, 20, 24, 27, 28) for specific numbers of factors with specific numbers of
levels. Resolution Il orthogonal arrays are frequently used in marketing research. The
term “orthogonal array,” as it is sometimes used in practice, is imprecise It correctly
refers to designs that are both orthogonal and baanced, and hence optimal. It is also
imprecisely used to refer to designs that are orthogonal but not balanced, and hence
potentialy nonoptimal. Imbalance is a generalized form of nonorthogonality, which
increases the variances of the parameter estimates.

Orthogonal designs are available for only a relatively small number of very
specific problems. They may not be available from follow reasons [7]:

o when there are many attributes in the survey,

e when the number of attribute levelsis different for most of factors,

e when some combinations of factor levels are infeasible,

e when anonstandard number of runs (factor level combinations or hypothetical
products) is desired or when the number of runs must be limited,

¢ when some factor levels combinations are unredistic, such as of the best product
at the lowest price, or

¢ when anonstandard modd is being used, such as a modd with interactions.

When an orthogonal design is not available, nonorthogonal designs must be used.
The measure of experimental design's quality refers as "efficiency”. In efficient
experimental designs variance and covariance of parameters which estimates are minimal.
Some orthogonal designs are not always more efficient than other orthogonal or
nonorthogonal designs.



There are a number of techniques for constructing such efficient designs. Two
basic are manual, which is typically used in surveys with small number of attributes and
levels, and computeri zed search which is based on approxi mate a gorithms.

Before a design is used, it must be coded [4]. One standard coding is the binary
or dummy variable or (1, 0) coding. Another standard coding is effects or deviations from
means or (1, 0,-1) coding. However, for evaluating design efficiency, an orthogonal
coding is most appropriate. This is because standard nonorthogonal coding such as effects
or binary is generaly corrdated, even for orthogonal designs.

One of the standard ways to orthogonally coding data is Chakravarty's coding [2].
The other one method is called the HAmert’s procedure. It consists of arranging a set of
data into a matrix which fulfils the Helmert’s characteristics, that is the sum of each
column is equal to zero. Helmert’s contrast matrix is a matrix with k-1 number of
columns and k number of rows. The diagona of this matrix from (1,1) to (k-1, k-1) is
filled with a decreasing series of numbers going from k-1 down to 1. The supra-diagonal
dements are set to zero while the infradiagonal eements are set to -1. A matrix
following these characteristic automatically has a mean of zero for each of the column.

Supra-diagonal triangle

0 0 0 0 0

k-2 0 0 0 0

k-3 0 0 0

1 k-4 0 0

-1 -1 -1 2 0

-1 -1 -1 -1 < 1
Diagonal

-1 -1 -1 -1 -1 -1

Infra-diagonal triangle
Figure 2.1 Helmert’s contrast matrix for an attribute with k levels

3. OPTIMALITY CRITERIA

Efficiencies are measures of design goodness. An optimality criterionis a single
number that summarizes how good a design is, and it is maximized or minimized by an
optimal design. In order to generate an efficient design, specifically methodology was
developed. Effident designs can be efficient for one criterion and less efficient for
another one. There are some standard criteria for measuring efficiency of experimental
design in Conjoint analysis [8]. Two generd types are: information-based criteria and
distance-based criteria

Consider the linear model where consumers provide utility scores, y;, for each
profile:

Y, =+ BX + B ot BX HE (3.1
for j ={1,...n}, where x; are independent variables. In matrix notation (3.1) can be
written asy = a+Xf + e. Let X is the orthogonally coded design matrix of independent



variables. The information-based criteria such as D- and A-optimality are both rd ated to
the information matrix X'X for the design. This matrix is important because it is
proportiond to the inverse of the variance-covariance matrix for the least-squares
estimates of the linear parameters of the model. Roughly, a good design should

"minimize" the variance (X'X)™, which is the same as "maximizing" the information
X'X . D- and A-efficiency are different ways of saying how large (X'X) or (X'X)™
are.

For the distance-based criteria, the candidates are viewed as comprising a point
cloud in p-dimensional Euclidean space, where p is the number of parameters in the
model. The goal is to choose a subset of this cloud that "covers" the whole doud as
uniformly as possible or that is as broadly "spread” as possible

D-optimality is based on the determinant of the i nformation matrix for the design,
which is the same as the reciprocal of the determinant of the variance-covariance matrix
for the least-squares esti mates of the linear parameters of the model.

(X' X)=1/](X"X)"| (3.2

The determinant is thus a general measure of thesize of (X'X)™. D-optimality is
the most common criterion for computer-generated optimal designs.

The D-optimality criterion has the following characteristics:

o D-optimality is the most computationally efficient criterion to optimize for the
low-rank update algorithms, since each update depends only on the variance of
prediction for the current design.

o (X'X) isinversdy proportional to the size of a confidence ellipsoid for the | east-
squares estimates of the linear parameters of the model.

e (X'X)Y? isequal tothe geometric mean of the eigenvalues of X'X wherepisa

number of parameters in the model (number of columns in coded matrix X)

o TheD-optimal designisinvariant to non-singular coding of the design matrix.

A-optimality is based on the sum of the variances of the estimated parameters for
the model, which is the same as the sum of the diagonal dements, or trace, of (X'X)™.
Like the determinant, the A-optimality criterion is a general measure of the size of
(X'X)™. A-optimality is less commonly used than D-optimality as a criterion for
computer optimal design. This is partly because it is more computationally difficult to
update. Also, A-optimality is not invariant to non-singular recoding of the design matrix;
different designs will be optimal with different coding.

For both criteria, if a balanced and orthogonal design exists, then it has optimum
efficiency; conversey, the more efficient a design is, the more it tends toward balance
and orthogonality. Assuming an orthogonally coded X:

e A designis balanced and orthogonal when (X'X)™ isdiagonal.

e A design is orthogonal when the submatrix of (X'X)™*, excluding the row and

column for the intercept, is diagona; there may be off-diagonal nonzeros for the
intercept.

o A design is balanced when dl off-diagonal dements in the intercept row and
column are zero.



o Asefficiency increases, the absol ute values of the diagonal d ements get smaller.
For gppropriate coded matrix X , measures of efficiency can be scaled to bi in interval 0
to 100. For Helmert’s coded data (matrix) it is more appropriate to use A optimality
criterion:
A eff =100x 1 - 33
Ny -tr(X'X)~/p

When data are coded by Chakravarty's procedure, it is more appropriate to use D

optimality criterion:

Deff =100x—+ (3.4)
Ny [(X*X)* P

In the equations (3.3) and (3.4), p is number of parameters in model. The total

number of parameters to be estimated is given by the formula: total number of levels —

number of attributes + 1. N, is number of runs (profiles) in fractional factorial design

specified by the user. It is suggested, when possible, including between two to three times
the number of runs as parameters estimated. However, design efficiency is not the only
reason for including two to three times as many runs as parameters to be estimated. All
real-world respondents answer conjoint questions with some degree of eror, so those
observations beyond the minimum required to permit utility estimation are needed to
refine and stabilize utility estimates.

These optimality criteria measure the goodness of the design rdative to
hypothetica orthogona designs that may be far from possible, so they are not useful as
absolute measures of design efficiency. Instead, they should be used rdativey, to
compare one design to another for the same situation. Efficiencies that are not near 100
may be perfectly satisfactory.

4. STANDARD ALGORITHMS FOR CONSTRUCTING EFFICIENT
CONJOINT DESIGNS

As mentioned above, finding exact optimal designsis hard. Finding exact optimal
designs in general requires solving a large nonlinear mixed integer programming
problem, as the number of feasible designs explodes rapidly as the number of factors and
levelsincreases. But weliveintherea world, and we don’t need the absolute best design,
only onethat’s good enough. This is where approximation algorithms come in.

One of maost simple agorithms for generating information-efficient designs is
Dykstra’s (1971) sequential search method [7]. The method starts with an empty design
and adds candidate points so that the chosen efficiency criterion is maximized at each
step. Thisalgorithmisfast, but it is not very reliablein finding a globally optimal design.
Also, it always finds the same design.

A typical approximation algorithm seeks to locate a good solution by the
following sequentia process[11]:

1. Chooseinitial feasible solution (random/greedy)
2. Modify solution dlightly (random/greedy)
3. Repeat 2. until finished, then report best solution seen



Random methods modify the current solution in some random way, and this
change is accepted or rejected via some decision routine. Event worse solutions may be
accepted under certain decision routines. Simulaed annealing is an example of a random
approximation agorithm.

Greedy methods modify the current solution in a way that improves the score; as
they’re seeking to improve the score for every iteration of the process they’re frequently
referred to as hillclimbing a gorithms.

Onelarge dass of pure greedy algorithms for generating efficient designs are the
exchange agorithms. Exchange agorithms hill climb by adding new design points and
removing existing design points to improve the objective. There are both Rank-1 and
Rank-2 exchange agorithms, and these classifications are based on how the agorithm
changes the points in the current candidate design matrix [11]:

Rank-1: Choose points to add and dd ete sequentially (Wynn, DETMAX)
Rank-2: Choose points to add and delete simultaneously (Fedorov, modified Fedorov, k-
exchange, kl-exchange)

The Mitchel and Miller (1970) simple exchange algorithm is a slower than
Dykstra's but more reliable method. It improves the initia design by adding a candidate
point and then deleting one of the design points, stopping when the chosen criterion
ceases to improve. The DETMAX agorithm of Mitchel (1974) generalizes the simple
exchange method. Instead of following each addition of a point by a deetion, the
algorithm makes excursions in which the size of the design may vary. These algorithms
add and dd ete points one at atime.

The next two agorithms add and delete points simultaneously, and for this
reason, are usually more rdiable for finding the truly optimal design; but because each
step involves a search over all possible pairs of candidate and design points, they
generally run much more slowly. The Fedorov (1972) agorithm simultaneously adds one
candidate point and deletes one design point. Cook and Nachtsheim (1980) define a
modified Fedorov agorithm that finds the best candidate point to switch with each design
point. Theresulting procedureis generaly as efficient as the simple Fedorov algorithmin
finding the optimal design, but it isup to twice as fast.

The k-exchange a gorithm modifies the current candidate design viathe process.
1. Examinek least critical points only
2. Least critica: x with smalest v(x), where v(x)=f'(x)-D- f (X)), x is a point in p-
dimensional design space, where the tota number of factors is p, f(X) is the
corresponding row of our design matrix X, and f '(X) is corresponding column.

3. Among thesek, find the best exchange to make.

If k =1, this is Wynn’s algorithm; if k = n, this is the modified Fedorov
algorithm.

The standard philosophy in approximation algorithms isthat many small steps are
generaly better than fewer but larger steps. This is precisely the idea behind the
coordinate-exchange d gorithm, which follows the procedure:

1. Again, choosek least critical points
2. Examine each point for the best coordinate to exchange
3. Make this best coordinate exchange



The coordinate exchange agorithm of Meyer and Nachtsheim (1995) does not
use a candidate set. Instead it refines an initial design by exchanging each leve with
every other possibleleve, keeping those exchanges that increase efficiency. In effect, this
method uses a virtual candidate set that consists of al possible runs, even when the full-
factorial candidate set istoo large to generate and store.

Some researchers have proposed nonstandard algorithms and criteria for
constructing efficent experimental design [7]. Steckel, DeSarbo, and Mahgan (SDM)
(1991) proposed using computer-generated experimental designs for conjoint analysis to
exdude unacceptable combinations from the design. They considered a nonstandard
measure of design goodness based on the determinant of the (m-factor x m-factor)
correlation matrix (JR|) instead of the customary determinant of the (p-parameter x p-

parameter) variance matrix (X 'X)™. The SDM approach represents each factor by a

single column rather than as a set of coded indicator variables. Designs generated using
nonstandard criteria will not generally be efficient in terms of standard criteria like A-
efficiency and D-efficiency, so the parameter estimates will have larger variances.

We have proposed an agorithm which combines standard optimality criteria (A
efficiency) with a nonstandard criterion (P-valuein ANOVA). This agorithm isshownin
the next section.

5. THE PROPOSED ALGORITHM

The basic idea behind the agorithm we proposed is to generate random initial
design and than remove and add points simultaneoudy in order to obtain more efficient
design. The agorithm has the following features:

1. Thevariables (attribute levels) may be numeric or symbolic.

2. The number of runsis specified arbitrary by the user.

3. The user has control over how much effort is expended by the algorithm, and can
if desired monitor the progress of the search. It is not necessary to specify initial
points for the search.

4. The agorithm combines two measures of design goodness: A-efficiency and P-
value.

Optimality criterion A-efficiency we discussed earlier. There are at least two
reasons for using P-value as the second optimdity criterion. First, it enables faster
convergence to the optimal solution. Second, it is observed that two designs with the
same A-efficiency can be differentialy balanced. Thus, this criterion serves to choose
better balanced one.

P-value presents the return of F probability distribution. That is probability that
there are not significant differences between the variances of columns in coded matrix X.
In other words, P-value can be used to determine whether parameters in orthogonally
coded matrix X have different degrees of diversity. P can take any valuein interva [0,1].
Low values of Pindicate that design has great unbalanced attribute levels. This va ue will
be low even if some of attributes have perfect baanced levels, while some other have
extreme unbalanced levels. By improving of balance in sense of quantity and
homogeneity, the P-value is also increased. If P-value is equal to one, it can mean ether
al levels are completdy balanced or there is unbalanced levels which are consistently
distributed.



The agorithm is based on following: The solution will be accepted (change will
be made) only if it is equal good or better then existing one, considering least one of the
criteria The underlying rationality is. Existence of unbalance impact efficiency but still
serves as guideline to detect list of appropriate and inappropriate candidates while
enabling convergence to the better solution (design).

The agorithm proceeds as foll ows:

Sep O (Initialization):

Specify the number of iterations (NI) and number of runs (profiles) N,
Set A efficiency tozero, A =0, andset i =0

Sep 1 (Generation of initial solution):

Randomly generate initial solution X, (N, x p matrix)

Sep 2 (Calculation of initial solution efficiency)

Calculate A, F, P forinitia matrix X,

Step 3 (Estimation of initial solution efficiency)

IF A =100 and P =1 design X, isoptima. GO TO Step 5.
ELSE seti =1. Goto Step 4

Step 4: (Iterative procedure for finding better solution)

a) Detect the worse balanced column in matrix X, (i.e. column with high va ue
of absolute sum of & ements)

b) Generatethelist of candidate rows for excluding from existing (current)
design (LE). Good candidates are those which levels affect on existing of
unba ance

c) Generatethelist of candidate rows for adding to the design (LA). Good
candidates are those rows that can improve balance of design

d) Chooserandomly onerow from LE list and remove from the design.

IF list LEisempty, GO TO Step 4a

€) Chooserandomly onerow from LA list and add to the design. One candidate
can be considered oncein the current iteration.
IFlist LA isempty, GO TO Step 4a.

f) Solve A and P

g IF A=A, o P>P, makeexchange. Current solution (design) is
matrix X;. GO TO Step 4h. ELSE GO TO Step 4e.

h) IFi=NlorlF A =100 and P=1, GO TO Step 5.

ELSESeti =i+ 1, GOTO Step 4
Step 5: Efficient experimental design is current matrix X, . END.

Since the initial design has been generated randomly, each time we start the procedure,
for the same date we obtain different design. If we repeat procedure several times, we can
choose the best suitabl e solution (design).



SOFTWARE PACKAGE MCON

The agorithm proposed in previous section, was implemented in Visual Basic

Application as the procedure in software named MCON. This software consists of:
1. Form for inputting data (attributes and attribute levels)
2. Modulefor orthogonal coding of input data according to Helmert's procedure
3. Procedure for constructing efficient experimental design.
4. Procedure for solving part-worths of attribute levels and attribute i mportances
5. Module for market simulation

The power of the algorithm and MCON software was tested on the numerous
examples and has been shown that it generates high efficient designs. The following
exampl e presents some of the results.

We have considered exampl e with five attributes with 3, 4, 3, 2, and 2 number of
levels respectively. In this example, full-factorial design which consists of all possible
combinations of attribute levels has 144 profiles (3x4x3x2x2=144). Saturated design
consists of 10 profiles ((3+4+3+2+2)-5+1=10), while recommended number of profiles
in design is between 15 and 30. We were tested efficiency of the algorithm i mplemented
in the MCON software by measuring goodness of the constructed designs. Results of
experiment are shown in Table 5.1.

Numbt_ar of runs_(proflla) F critical A = P_val ue
inthe design
12 2.0333 | 85.0155 0 1
14 2.0185 | 82.5527 | 0.0490 | 0.99994
15 2.0126 | 86.0423 | 0.0545 | 0.09999
16 2.0076 | 89.0611 | 0.0117 | 0.99999
18 1.9990 | 92.7027 | 0.0268 | 0.99999
20 1.9929 | 89.7209 | 0.0346 | 0.99998
24 1.9833 | 90.2650 0 1
25 1.9814 | 94.4193 @ 0.0001 1
32 19717 | 94.0762 | 0.0171 | 0.99999
Table 5.1 Quality of designs with various number of runs, generated by the MCON
software

The first column in the Table 5.1 shows the number of runs (profiles) in
experimental design we choose arbitrary. The second column contains F-critical vaues
for every design generated by the MCON software. This value serves for testing
hypothesis of variance diversity. The third column shows vaues of the designs A-
efficiency. Column F indicates existence of unbalance in design. When this value is equal
to zero, design is completely ba anced. Column P-value indicates uniformity of unbalance
in experimenta design. If this vaue is near to 1 it is mean that design is uniformly
balanced.

As can be seen from Table 1, MCON software has constructed high efficient and
well-balanced designs, no matter the dimensions of design is specified. Design efficiency
for al of designs is greater than 82%, while for some of them (designs with 18 and 24
profiles) have reached value greater than 90%. In all of these designs, very low and
uniformly distributed unbalance of attribute levels exists (F is close to 0 and P value is
close to 1). Especiadly, design with 12 profiles is completely balanced with high



efficiency (85%), while completdy balanced design with 24 profiles reaches efficiency
greater than 90%.

Most efficient design, constructed by MCON software has consisted of 25 runs.
A-efficiency of thisdesign is equa to 94,42% and design have only one unbalanced levd.

6. CONCLUSION

Conjoint analysis has been widdy used method for measuring customer
preferences since the 1970s. This method is based on idea that customers decisions
depend on al tangible and intangible product features.

One of the fundamenta steps in performing Conjoint analysis is construction of
experimental designs. These designs are expected to be orthogonal and balanced in an
ideal case In practice, though, it is hard to construct optimal designs and thus
constructing of near optimal and efficient designs is carried out. Efficient designs are
typically nonorthogonal; however they are efficient in the sense that the variances and
covariances of the parameter estimates are minimized.

There are several ways to quantify the rdative efficiency of experimental
designs. The choice of measure will determine which types of experimenta designs are
favoured as well as the agorithms for choosing efficient designs. In this paper we have
presented some standard optimality criteria for measuring design efficiency, as wel as
some widdy used agorithms for constructing such efficient designs. These a gorithms
aretypically approximate and can be random or greedy, sequential or simultaneous.

We have proposed a simultaneous algorithm which combines two optimality
criteria standard criterion named by A-efficiency, and nonstandard criterion, P-value in
ANOVA. This agorithm we have implemented in Visud Basic application, as the
procedure in MCON software. The computational experiments we made confirm the
efficiency of the algorithm. It was shown that is practical to use these two optimality
criteria. The designs obtained by the algorithm are not just high efficient but they are
wel|-balanced.

There are a number of possible directions for future research in the area of
efficient experimental design in Conjoint analysis. Firgt, the results presented here should
be compared to aternative optima design criteria, such as D-optimality. Second, the
efficiency of the d gorithm could be compared with efficiency some standard al gorithms.
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